首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   13篇
  国内免费   1篇
电工技术   7篇
化学工业   66篇
金属工艺   10篇
机械仪表   13篇
建筑科学   13篇
能源动力   14篇
轻工业   16篇
石油天然气   4篇
无线电   41篇
一般工业技术   47篇
冶金工业   18篇
原子能技术   2篇
自动化技术   106篇
  2023年   10篇
  2022年   17篇
  2021年   25篇
  2020年   28篇
  2019年   26篇
  2018年   28篇
  2017年   26篇
  2016年   20篇
  2015年   5篇
  2014年   29篇
  2013年   31篇
  2012年   13篇
  2011年   25篇
  2010年   18篇
  2009年   9篇
  2008年   9篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1993年   2篇
  1991年   4篇
  1975年   1篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
101.
Nickel-base superalloys such as René 80 are widely used in manufacturing aircraft turbine blades. They are usually coated in order to increase their wear, oxidation, erosion, and hot corrosion properties against environmental degradation. In this article, the mechanical behavior (tensile and low-cycle fatigue (LCF)) of uncoated and aluminide-coated (CODEP-B) René 80 has been studied at 871 °C and 982 °C. Experimental results show that the tensile properties of coated specimens are relatively lower than those of uncoated ones in the same conditions, but application of coating increases the LCF life of René 80 at T = 871 °C, 982 °C, R = (ε min/ε max) = 0, strain rate of 2 × 10−3 s−1, and Δε t  = 0.8 pct. Scanning electron microscopy (SEM) studies of coated specimens at N = Nf show that the nucleation of cracks occurs merely in substrate, but cracks start from the surfaces in uncoated specimens. Transmission electron microscopy (TEM) investigations have been performed on fractured uncoated specimens to evaluate the microstructures at different temperatures. The misfit dislocation, pair dislocations, and cutting of γ′ were observed at T = 871 °C and 982 °C. The TEM studies also showed that at 982 °C stacking fault was observed in γ′ particles.  相似文献   
102.
Homogeneous copolymerization of styrene and 1‐hexene was carried out in toluene at room temperature using bisindenyl ethane zirconium dichloride/methylaluminoxane (MAO). The supported catalyst was prepared with immobilization of Et(Ind)2ZrCl2/MAO on silica (calcinated at 500°C) with premixed method. Heterogeneous copolymerization of styrene/1‐hexene with different mole ratios was carried out in the presence of supported catalyst system. The copolymers obtained from homogeneous and heterogeneous catalyst system were characterized by 1H NMR and 13C NMR. Composition of the resulting copolymers was determined by 1H NMR data. Analysis of 13C NMR spectra of obtained copolymers by homogeneous and heterogeneous catalyst systems present isotactic olefin‐enriched copolymers. Molecular weight and thermal behavior of resulting copolymers was investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4008–4014, 2007  相似文献   
103.
Ni-base superalloy René 80 is widely used in manufacturing aircraft turbine blades. The service temperature of this alloy is in the range of 760-982 °C. Although this alloy possesses suitable mechanical, oxidation and hot corrosion properties, it is coated in order to increase its wear, oxidation, erosion and hot corrosion properties against harmful environmental service conditions.In this paper the influence of applying diffusion coating (CODEP-B) on the tensile properties of René 80 has been studied in the temperature range of 22-982 °C. Experimental results show that the tensile properties of the coated specimens are relatively lower than that of uncoated ones in the same conditions. But in the service conditions, coating could have some useful and positive effects practically.In aircraft turbines in service conditions, the maximum strain the blades experience is always bellow 1% and in this range of strain no crack initiates and generates on the applied coating surface. Thus in this situation, the coating would certainly have protective properties preventing from oxidation, hot corrosion and erosion of the base metal.  相似文献   
104.
In the present era, a very huge volume of data is being stored in online and offline databases. Enterprise houses, research, medical as well as healthcare organizations, and academic institutions store data in databases and their subsequent retrievals are performed for further processing. Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application. If the data is already sorted, finding or searching is comparatively faster. In real-life scenarios, the data collected from different sources may not be in sorted order. Sorting algorithms are required to arrange the data in some order in the least possible time. In this paper, I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm. I call it Smart Bubble sort that exhibits dynamic footprint: The capability of adapting itself from the average-case to the best-case scenario. It is an in-place sorting algorithm and its best-case time complexity is Ω(n). It is linear and better than bubble sort, selection sort, and merge sort. In average-case and worst-case analyses, the complexity estimates are based on its static footprint analyses. Its complexity in worst-case is O(n2) and in average-case is Θ(n2). Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature. The Smart Bubble sort outperforms bubble sort, selection sort, and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario.  相似文献   
105.
Abstract

The thermo-mechanical vibration characteristics of doubly-curved nano-composite shells reinforced by graphene nanoplatelets are investigated by considering a uniform distribution of graphene and a first-order shear deformation theory. The mechanical properties of the nano-composite shells are estimated by using the modified Halpin–Tsai model. The governing equations are first derived by a variational formulation using Hamilton’s principle and are solved using the Galerkin technique. Numerical results are presented for various shell curvatures and compared with those available in the archival literature. Furthermore, parametric studies are offered to highlight the significant influence of graphene nanoplatelets’ weight fraction, dimensions of graphene nanoplatelets, and temperature variation, on the free vibration of the nano-composite shells.  相似文献   
106.
In this paper, an integrated process using photovoltaic power to harvest microalgae by electro-flocculation (EF) and hydrogen recovery is presented. It is mainly favorable in regions with high solar radiation. The electro-flocculation efficiency (EFE) of Chlorella pyrenoidosa microalgae was investigated using various types of electrodes (aluminum, iron, zinc, copper and a non-sacrificial electrode of carbon). The best results regarding the EFE, and biomass contamination were achieved with aluminum and carbon electrodes where the electrical energy demand of the process for harvesting 1 kg of algae biomass was 0.28 and 0.34 kWh, respectively, while the energy yield of harvested hydrogen was 0.052 and 0.005 kWh kg?1, respectively. The highest harvesting efficiency of 95.83 ± 0.87% was obtained with the aluminum electrode.The experimental hydrogen yields obtained were comparable with those calculated from theory. With a low net energy demand, microalgae EF may be a useful and low-cost technology.  相似文献   
107.
Present planning procedures are based on single outages of three-phase circuits which do not take the actual fault pattern into account. The majority of faults are single-phase faults which is motivating the present approach to exploit the remaining conductors for power transmission. A shunt device (FACTS) is conceived which is able to generate a loading pattern at breaker locations with one or two phases open such that the network side always sees a symmetrical loading. The theoretical background is given and numerical examples illustrate the efficiency of the concept. The circuit affected by a fault may be modelled by a positive sequence impedance which can be inserted in ordinary power flow programs for security calculations  相似文献   
108.
High chemical resistance is the main prerequisites for materials that are intended to be utilized in usages such as chemicals storage containers production. Nanocomposites of epoxy resin containing nanoclay, CaCO3 and TiO2 nanoparticles were prepared and their chemical resistance was studied. Moreover, the effect of electron beam irradiation was explored. TEM micrographs proved the dispersion of nano-size particles in the polymeric matrix. XRD patterns showed an exfoliated structure for nanocomposite containing 1 % nanoclay and intercalated structures for nanocomposites with higher nanoclay contents. SEM showed the pits that appeared in epoxy/nanoclay structure due to chemical corrosion. Weight loss measurements revealed that an addition of 1 % nanoclay to the epoxy matrix is effective for improving the chemical properties of the polymer. Desirable effect of 100 kGy irradiation on chemical resistance properties of the samples was also observed in both acidic and basic environments.  相似文献   
109.
Multi‐axial multi‐ply fabric (MMF) composites are becoming increasingly popular as reinforcing materials in high‐performance composites due to their high mechanical properties. This work aimed to study the effects of three variable parameters including fiber contents, numbers of plies, and layer orientations on the mechanical properties of MMF composites. Unidirectional carbon fibers and a two‐part epoxy resin were employed to produce the composite laminates using the manual lay‐up process. It was found that the mechanical properties of composites made with 5‐ply were slightly greater than 3‐ply composites. However, there was no highly significant difference between them. Generally, the angle‐ply of the composites showed the greatest effect on the mechanical properties compared with number of plies and layer orientations. The significant improvements in mechanical properties of the composites were further supported using scanning electron microscopy (SEM). Morphologies of the tensile fracture surfaces of composites revealed that the presence of fiber pulled out results in the creation of voids between the fibers and matrix polymer. This causes the mechanical properties of the composites to be reduced. Finally, the enhancement of mechanical properties of composites clearly confirmed that angle‐ply layer (0°,?35°,0°,+35°,0°) had the most significant reinforcing effect among other parameters evaluated. POLYM. ENG. SCI., 54:2676–2682, 2014. © 2013 Society of Plastics Engineers  相似文献   
110.
Tool sequence selection is an important activity in process-planning for milling and has great bearing on the cost of machining. Currently, it is accomplished manually without consideration of cost factors a priori. Typically, a large tool is selected to quickly generate the rough shape and a smaller clearing tool is used to generate the net-shape. In this paper, we present a new systematic method to select the optimal sequence of tool(s), to machine a 2.5-axis pocket given pocket geometry, a database of cutting tools, cutting parameters, and tool holder geometry. Algorithms have been developed to calculate the geometric constructs such as accessible areas, and pocket decomposition, while considering tool holders. A Genetic Algorithm (GA) formulation is used to find the optimal tool sequence. Two types of selection mechanisms namely “Elitist selection” and “Roulette method” are tested. It is found that the Elitist method converges much faster than the Roulette method. The proposed method is compared to a shortest-path graph formulation that was developed previously by the authors. It is found that the GA formulation generates near optimal solutions while reducing computation by up to 30% as compared to the graph formulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号